
Semiconductor Devices II

Part 2

Chapter 2: Defects in 2D materials

Andras Kis

andras.kis@epfl.ch

EPFL – École Polytechnique Fédérale de Lausanne

Electrical Engineering Institute



[Outline] Chapter 2: Defects in 2D materials

▪ Overview of defects in 2D materials

▪ Point defects

▪ How to mitigate (some) defects

▪ Positive applications of defects
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Most common defect types in 2D

▪ Point defects

▪ vacancies

▪ substitutions

▪ dopants

▪ Line defects

▪ grain boundaries

▪ lateral heterostructures

▪ vacancy lines

▪ Two-dimensional defects

▪ wrinkles

▪ ripples

      

ACS Nano (2015) Lehtinen

Dumcenco et al. 2D Mater. (2015)

Castellanos-Gomez et al. Nano Letters (2013)

Crystals are like people, it is the 
defects in them which tend to 
make them interesting!
 - Sir Colin Humphreys, 
CBE FRS FREng FIMMM FInstP 
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Most common defects: point defects

Missing atom Native atom in the wrong place Foreign atom

vacancy antisite defect substitutional doping

VS2 S2Mo NbMo

Nomenclature:

AXBY 

How many
Original atom

How many got replaced
New atom

S

Mo
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Influence of point defects on FET characteristics

ON current: decreases

 OFF current: increases

 ION/IOFF: decreases

 Subthreshold swing: increases
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Most common defects: line defects

Lehtinen et al. ACS Nano (2015) Yin et al. Science (2014)

Grain boundaries

Lateral heterostructures

Vacancy lines

Li et al, Science (2015)

Lehtinen et al. ACS Nano (2015)
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Can we avoid grain boundaries?
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Epitaxial CVD MoS2: domain orientations

Mo

S

Al (top)

Al (bottom)

O
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3-2 Superstructure

90%

97%
Dumcenco et al. ACS Nano (2015)



Conductivity and grain boundaries

Scanning Kelvin probe microscopy
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Conductivity and grain boundaries
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Conductivity and grain boundaries

a

b

Najmaei, Ajayan et al. ACS Nano 2014

123
4

5

6

20 µm

MoS2

Au

lead

30

25

20

15

10

5

0
T

w
o

-p
ro

b
e

M
o

b
ili

ty
µ

2
C

(c
m

2
V

-1
s

-1
)

806040200

Channel length (µm)

Nearest neighbors
Other combinations

1-2

5-6 1-6

Dumcenco…Kis; ACS Nano (2015)

10



Most common point defects in MoS2

Zhou et al.  Nano Letters (2013)

Conduction band

Valence band

V
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Atomic and electronic structure of VS

TEM image and 
structural model

Band structure Defect state wavefunction

Hong et al, Nature Communications (2015)
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Antisite defects in MoS2

Hong et al, Nature Communications (2015)
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Defect formation energy and concentration

Hong et al., Nature Communications (2015)

Defect concentration ~1013 cm-2 !

EXFOLIATED

CVD
EVAPORATED

𝑁𝑉 = 𝑁𝑆𝑒− Τ(∆𝐸𝐹𝑜𝑟𝑚 𝑘𝐵𝑇) 𝑁𝑉  vacancy concentration
𝑁𝑆  number of lattice sites
𝑇 temperature
𝑘𝐵  Boltzmann constant
∆𝐸𝐹𝑜𝑟𝑚 defect formation energy 14



Transport in a disordered semiconductor

Perfect semiconductor:
▪ Delocalized charge carriers
▪ Band transport

Disordered semiconductor:
▪ Trapped charges
▪ Localisation
▪ Hopping transport

𝜎 = 𝜎0𝑒− Τ(𝑇0 𝑇)
𝛽

𝜎 electrical conductivity
𝑇 temperature
𝑘𝐵  Boltzmann constant
𝐸𝐴 activation energy
𝑇0, 𝛽 fitting parameters

𝜎 = 𝜎0𝑒− Τ(𝐸𝐴 𝑘𝐵𝑇)

Electrical conductivity:

With four parameters I can fit an elephant, and 
with five I can make him wiggle his trunk.

 - John von Neumann 15



Temperature-dependent electrical transport in MoS2

No top-gate dielectric

Radisavljevic and Kis; Nature Materials (2013)
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Most common point defects in MoS2

Zhou et al.  Nano Letters (2013)

Conduction band

Valence band

V
S

V
S2

S2
Mo

VS

VS2

S2Mo

17



Quantum capacitance

𝑉𝑡𝑔

Equivalent circuit

𝑉𝐴𝐶

𝑉𝑡𝑔 𝑉𝑡𝑔

𝐶𝑡𝑔

𝐶𝑄

𝑉𝑡𝑔

𝐶𝑡𝑔

Equivalent device: capacitor with the 
2D material as one of the electrodes

𝑑

𝐶𝑡𝑔 =
𝑆𝜀

𝑑

Geometric 
capacitance

𝐶𝑄 = 𝑒2 ∙ 𝐷𝑂𝑆
quantum 
capacitance

𝐶𝑡𝑔 ≫ 𝐶𝑄, 𝐶𝑄  dominatesFor

𝐶𝑄 =
2𝑒𝑚∗

𝜋ℏ2

for 2D inside the 
1st subband
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Repeated from 2.1: Dimensions in Semiconductor Physics

3D


DOS

2D 1D 0D

∝ 𝐸 ∝ 𝑐𝑜𝑛𝑠𝑡.
∝

1

𝐸
∝ 𝛿(𝐸)

assuming 𝐸 =
ℏ2𝑘2

2𝑚
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Capacitance - voltage measurements

Zhu et al., Nature Communications (2014) 𝐷𝐵𝑇 = 𝛼𝐷0 exp
Τ𝐸 − 𝐸𝑔 2

𝜑
𝜑 ≈ 100 meV
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CV measurementsa

c

b

d
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CV measurements – parameter extraction

 Exercise session
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Mitigation strategies - overview

Various strategies for reducing the impact of point defects:

▪ Dielectric environment (encapsulation)

▪ Chemical treatment

31



Dielectric environment

Jena and Konar, PRL 98, 136805 (2007) 32

initialEnhanced Coulomb
interaction

Dampened Coulomb
interaction



Dielectric environment

Jena and Konar, PRL 98, 136805 (2007)
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Temperature-dependent electrical transport
No top-gate dielectric

Radisavljevic and Kis; Nature Materials (2013)

With top-gate dielectric

34
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Temperature-dependent electrical transport
No top-gate dielectric

Radisavljevic and Kis; Nature Materials (2013)
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[RECAP] Transport in a disordered semiconductor

Perfect semiconductor:
▪ Delocalized charge carriers
▪ Band transport

Disordered semiconductor:
▪ Trapped charges
▪ Localisation
▪ Hopping transport

𝜎 = 𝜎0𝑒− Τ(𝑇0 𝑇)
𝛽

𝜎 electrical conductivity
𝑇 temperature
𝑘𝐵  Boltzmann constant
𝐸𝐴 activation energy
𝑇0, 𝛽 fitting parameters

𝜎 = 𝜎0𝑒− Τ(𝐸𝐴 𝑘𝐵𝑇)

Electrical conductivity:

With four parameters I can fit an elephant, and 
with five I can make him wiggle his trunk.

 - John von Neumann 36



Temperature-dependent electrical transport
No top-gate dielectric

Radisavljevic and Kis; Nature Materials (2013) 37
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Screened vs. unscreened disorder potential

S. Adam and D. Sarma., PRB (2008):

𝜎 ∼ 𝑛 screened ch. impurities

𝜎 ∼ 𝑛2  unscreened
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Mobility vs. temperature

𝜇~𝑇−𝛾

𝛾 = 0.73

𝛾 =1.4

Bulk 𝛾 =2.6

Calculations:
HP mode quenching 𝛾 = 1.5 Kaasbjerg et al., PRB (2012)
HP mode quenching 𝛾 = 1 Kaasbjerg et al., PRB (2013)
HP mode quenching 𝛾 = 0.5 Ong and Fischetti, PRB (2013)
T dep. of screening and CI scattering, TG screening

Radisavljevic and Kis; Nature Materials (2013)
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Encapsulation in Boron Nitride

Cui…Hone; Nat. Nano (2015)

40



Defect healing by chemical treatment: thiols

Yu et al, Nature Communications (2014)

(3-mercaptopropyl)trimethoxysilane 
(MPS)
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Defect healing by chemical treatment: thiols

Yu et al, Nature Communications (2014)
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Defect healing by chemical treatment: TFSI superacid

bis(trifluoromethane) sulfonimide (TFSI); stronger acidity than H2SO4

Amani et al., Science (2015)
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Defect healing by chemical treatment: TFSI superacid

Before:

Roy et al., Nano Lett. (2018) 44



Defect healing by chemical treatment: TFSI superacid

Roy et al., Nano Lett. (2018)

After:
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Positive aspects: reduction of contact resistance

Stanford et al., npj 2D Materials and Applications (2019)
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Positive aspects: single-photon sources

Point defects in WSe2 emit photons one by one

Srivastava et al., Nature Nanotech. (2015)

High intensity
Low intensity

O2 dissociated at a 
Se vacancy

Zheng et al., arXiv:1811.00221

OSe

O adsorbed
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Positive aspects: single-photon sources

Point defects in BN emit photons one by one

Tran et at., Nature Nanotechnology (2015)

Pholuminescence map

Emission spectrum

VN NBVN

48

1.99 eV



Positive aspects: induced magnetism in 
PtSe2

  

    

    

    

    

         

 
 
  
  
  
 
 
 
 
 
 
 

 
 
  
 
 
 
 
 
 
      

            

       

         

        

Avsar et al. Nature Nanotechnology (2019)
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Recapitulation

Defect types

▪ Two-dimensional defects (wrinkles, ripples)

▪ Line defects

▪ Point defects

Impact of point defects

▪ Reduced device performance due to disorder and charge trapping

▪ Quantifying their impact on electrical performance (transport and CV measurements)

Point defect mitigation

▪ Dielectric environment

▪ Chemical treatment

Positive applications of defects

▪ Doping, reduced contact resistance

▪ Single-photon sources

▪ Defect-induced magnetism
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