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[Outline] Chapter 2: Defects in 2D materials

Overview of defects in 2D materials

Point defects

How to mitigate (some) defects

Positive applications of defects
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Most common defects: point defects
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Influence of point defects on FET characteristics

Drain current, ID
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Most common defects: line defects

Grain boundaries Vacancy lines

Lehtinen et al. ACS Nano (2015) Yin et al. Science (2014)

Lateral heterostructures
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Can we avoid grain boundaries?
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Epitaxial CVD MoS,: domain orientations

3-2 Superstructure
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Conductivity and grain boundaries

Scanning Kelvin probe microscopy
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Conductivity and grain boundaries
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Conductivity and grain boundaries
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Most common point defects in MoS,

Zhou et al. Nano Letters (2013)
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Atomic and electronic structure of V;

TEM image and

structural model
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Antisite defects in MoS,
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Defect formation energy and concentration

Table 1 | Formation energy (AEg,,) and enthalpy (AHg,,)
of considered point defects. 0.32
CASTEP VASP
AHForm(ev) AHme(eV) AEForrn(ev) O 24 -
Mosg 6.22~7.29 5.45~6.09 579 P
Mo2s, 1115 7.95 7.54 '
Moo, — 9.81~11.09 10.49 E
Smo 6.65~558 6.11~5.47 577 : 0.16 -
52, 8.00 7.09 7.49 =
Vs 2.74~1.67 2.86~222 2.12 C
Vs, — 5.63~4.34 414 3
Vo 6.98~4.84 7.28~5.99 6.20 0.08 -
CASTEP, Cambridge Sequential Total Energy Package; VASP, Vienna Ab-initio Simulation
Package.
The formation enthalpy is defined as AHro = Epefect-Epure + 1 X HRremoved=M X Kliadded- [t iS the
chemical potential of the removed and/or added atom to form a defect, while the formation OOO o
energy is defined asAErorm = Esystem=Ns X Es mi-Namo % Eno_n, Where Eg g and Engo i are the
single atom energy of Mo and S in a perfect monolayer. (Please refer to the Methods section for
more details).
Different exchange-correlation functionals are used in the VASP and CASTEP codes as discussed
in the text.
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B EVAPORATED
B CVD

: Mog

Vs VeaVaso Ve Voss S2Mo Mo2g;

Defect concentration ~1013 cm™2!

Hong et al., Nature Communications (2015)

NV — NSe_(AEForm/kBT)

Ny vacancy concentration
Ng number of lattice sites
T temperature

kg Boltzmann constant

defect formation energy 14



Transport in a disordered semiconductor

Perfect semiconductor:
= Delocalized charge carriers
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Electrical conductivity:
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= Trapped charges
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= Hopping transport \,/ \?/ \?/ \?/ \’/ —(To/T)B
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. . T temperature
With four parameters I can fit an elephant, and ks  Boltzmann constant

with five | can make him wiggle his trunk. E, activation energy
- John von Neumann Ty, B fitting parameters 15




Temperature-dependent electrical transport in MoS,

No top-gate dielectric
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Most common point defects in MoS,

Zhou et al. Nano Letters (2013)
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Quantum capacitance
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Repeated from 2.1: Dimensions in Semiconductor Physics
3D 2D 1D oD
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Capacitance - voltage measurements
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CV measurements

Monolayer MoS,
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CV measurements — parameter extraction

— Exercise session

In [34]:

In [35]:

Remove background and define Ci = Cmax

M idxa
idx2
idx1
idx2

Cegch ex

idx3 =
idx3 =

np.where(vg_ex == -3)
np.where(vg_ex == -1)
int(idx1[e])
int(idx2[e])

= Cgch ex - np.mean{Cgch ex[idx1:idx2]); # Remove background for better fitting, Cbgd = average bet
np.where(Vg ex == 3) # find index of V = 3V for maximum capacitance value Ci = Cmax
int(idx3[e])

Ci=Cgch ex[idx3];

M plt.plot (vg_ex,Cgch_ex,’-*")
plt.xlabel('V_g (V)')
plt.ylabel('Capacitance (F/m~2)")
plt.title( Experimental data (no BG)');
plt.ylim([np.min(Cgch_ex),np.max(Cgch_ex)])
plt.show()
plt.close()

0.004

0003

0.002

Capacitance (F/m*2)

0.001

0.000

#Cg Fit

Experimental data (no BG)
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Mitigation strategies - overview

Various strategies for reducing the impact of point defects:
= Dielectric environment (encapsulation)

=  Chemical treatment



Dielectric environment a . .a semiconductor
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FIG. 1. Electric flux lines originating from a fixed ionized
impurity and terminating on a mobile electron, and the effect
of the dielectric environment. The flux lines bunch closer inside
the semiconductor layer if €, < €,, and spread farther apart if
€, < €, thus enhancing Coulomb interaction in the former case
and damping it in the latter.

Jena and Konar, PRL 98, 136805 (2007)



Dielectric environment
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Temperature-dependent electrical transport
No top-gate dielectric With top-gate dielectric
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Temperature-dependent electrical transport

No top-gate dielectric
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[RECAP] Transport in a disordered semiconductor

Perfect semiconductor:
= Delocalized charge carriers

SO0 A S
¢ 9P ey e =0
LR A0 e

Electrical conductivity:

Disordered semiconductor:
= Trapped charges
= | ocalisation

= Hopping transport \,/ \?/ \?/ \?/ \’/ —(To/T)B

FY e Yy T
\,/ \,/ \,/ \,/ \,/ o electrical conductivity

. . T temperature
With four parameters I can fit an elephant, and ks  Boltzmann constant

with five | can make him wiggle his trunk. E, activation energy
- John von Neumann Ty, B fitting parameters 36




Temperature-dependent electrical transport

No top-gate dielectric
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Screened vs. unscreened disorder potential
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Mobility vs. temperature

Radisavljevic and Kis; Nature Materials (2013) ‘LLNT_V
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Encapsulation in Boron Nitride
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Defect healing by chemical treatment: thiols

SH

Si
H,CO” 1 “OCH,
OCH,

(3-mercaptopropyl)trimethoxysilane
(MPS)

Yu et al, Nature Communications (2014)
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thiols

Defect healing by chemical treatment

b B

L
.o.o...o

Figure 2 | High-resolution aberration-corrected TEM images.

(a) As-exfoliated and (b) TS-treated monolayer MoS, sample, showing the
significant reduction of SV by MPS treatment. The SVs are highlighted

by red arrows. The overlaid blue and yellow symbols mark the position of

Mo and S atoms, respectively. Scale bar, Tnm. Detailed intensity profile

analysis and histogram of SV density are shown in Supplementary Fig. 9.
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Defect healing by chemical treatment: TFSI superacid

bis(trifluoromethane) sulfonimide (TFSI); stronger acidity than H,SO,
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Defect healing by chemical treatment: TFSI superacid
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Defect healing by chemical treatment: TFSI superacid

After:
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Positive aspects: reduction of contact resistance

H, > O, Plasma
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Stanford et al., npj 2D Materials and Applications (2019)
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Positive aspects: single-photon sources

Point defects in WSe, emit photons one by one 10-3p
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Positive aspects: single-photon sources

Point defects in BN emit photons one by one
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Positive aspects: induced magnetism in ..
PtSEZ se
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Recapitulation

Defect types
= Two-dimensional defects (wrinkles, ripples)
= Line defects
= Point defects

Impact of point defects
= Reduced device performance due to disorder and charge trapping
= Quantifying their impact on electrical performance (transport and CV measurements)

Point defect mitigation
= Dielectric environment
= Chemical treatment
Positive applications of defects
= Doping, reduced contact resistance
= Single-photon sources
= Defect-induced magnetism
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